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Abstract. This work regards our preliminary investigation on the problem of path
planning for autonomous vehicles that move on a freeway. We approach this problem
by proposing a driving policy based on Reinforcement Learning. The proposed policy
makes minimal or no assumptions about the environment, since no a priori knowledge
about the system dynamics is required. We compare the performance of the proposed
policy against an optimal policy derived via Dynamic Programming and against man-
ual driving simulated by SUMO traffic simulator.
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1 Introduction

According to [3], autonomous driving tasks can be classified into three categories;
navigation, guidance, and stabilization. Navigation tasks are responsible for generating
road-level routes, guidance tasks are responsible for guiding vehicles along these routes
by generating tactical maneuver decisions, and stabilization tasks are responsible for
translating tactical decisions into reference trajectories and then low-level controls.

In this work, we focus on tactical level guidance, and, specifically, we aim to con-
tribute towards the development of a robust real-time driving policy for autonomous
vehicles that move on a highway. The driving policy development problem is formu-
lated from an autonomous vehicle perspective, and, thus, there is no need to make
any assumptions regarding the kind of other vehicles (manual driving or autonomous)
that occupy the road. The proposed methodology approaches the problem of driving
policy development by exploiting recent advances in Reinforcement Learning (RL).

1.1 Related Work

The problem of path planning for autonomous vehicles can be seen as a problem of
generating a sequence of states that must be tracked by the vehicle. Under certain
assumptions, simplifications and conservative estimates, heuristic rules can be used
towards this direction [14]. These methods, however, are often tailored for specific
environments and do not generalize [4] to complex real world environments and diverse
driving situations.

1



Optimal control methods aim to overcome these limitations by allowing for the
concurrent consideration of environment dynamics and carefully designed objective
functions for modelling the goals to be achieved [1]. Optimal control approaches have
been proposed for cooperative merging on highways [10], for obstacle avoidance [2],
and for generating ”green” trajectories [12] or trajectories that maximize passengers’
comfort [7]. Although, optimal control methods are quite popular, there are still open
issues regarding the decision making process. First, these approaches usually map the
optimal control problem to a nonlinear program, the solution of which generally corre-
sponds to a local optimum for which global optimality guarantees may not hold, and,
thus, safety constraints may be violated. Second, the efficiency of these approaches is
dependent on the model of the environment. In many cases, however, that model is
assumed to be represented by simplified observation spaces, transition dynamics and
measurements mechanisms, limiting the generality of these methods to complex sce-
narios. Finally, optimal control methods are not able to generalize, i.e., to associate a
state of the environment with a decision without solving an optimal control problem
even if exactly the same problem has been solved in the past.

Very recently, RL methods have been proposed as a challenging alternative towards
the development of driving policies. RL approaches alleviate the strong dependency
on environment models and dynamics, and, at the same time, can fully exploit the
recent advances in deep learning [8]. Along this line of research, RL methods have
been proposed for intersection crossing and lane changing [5, 9], as well as, for double
merging scenarios [11].

1.2 Our Contribution

We propose a RL driving policy based on the exploitation of a Double Deep Q-Network
(DDQN) [13]. The derived policy is able to guide an autonomous vehicle that move
on a highway, and at the same time take into consideration passengers’ comfort via
a carefully designed objective function. To the best of our knowledge, this work is
one of the first attempts that try to derive a RL policy targeting unrestricted highway
environments, which are occupied by both autonomous and manual driving vehicles.
Moreover, this work provides insights to the trajectory planning problem, by compar-
ing the proposed policy against an optimal policy derived using Dynamic Programming
(DP). Finally, we investigate the generalization ability and stability of the proposed
RL policy using the established SUMO microscopic traffic simulator.

2 Problem Description and Assumptions

We consider the path planning problem for an autonomous vehicle that moves on free-
way, which is also occupied by manual driving vehicles. Without loss of generality, we
assume that the freeway consists of three lanes. The driving policy should generate a
collision-free trajectory, which should permit the autonomous vehicle to move forward
with a desired speed, and, at the same time, minimize its longitudinal and lateral ac-
celerations (passengers’ comfort). The aforementioned three criteria are the objectives
of the driving policy, and thus, the goal that the RL algorithm should achieve.

Moreover, we do not assume any communication between vehicles. Instead, the
autonomous vehicle estimates the position and the velocity of its surrounding vehicles
using sensors installed on it. The state representation of the environment, includes
information that is associated solely with the position and the velocity of the vehi-
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Figure 1: State representation. The autonomous vehicle is represented by the
red rectangle. (a) The purple shaded area corresponds to the sensed environ-
ment. (b) Discretization of sensed environment.

cles. Furthermore, we assume that the freeway does not contain any turns. However,
the generated vehicle trajectory essentially reflects the vehicle longitudinal position,
speed, and its traveling lane, and, therefore, for the trajectory specification, possible
curvatures may be aligned to form an equivalent straight section. Finally, the trajec-
tory of the autonomous vehicle can be fully described by a sequence of high-level goals
that the vehicle should achieve within a specific time interval. We assume that the
mechanism which translates these goals to low-level controls and implements them is
given. Based on the aforementioned problem description and underlying assumptions,
the objective of this work is to derive a function that will map the information about
the autonomous vehicle, as well as, its surrounding environment to a specific goal.

3 Driving Policy

3.1 The reinforcement learning framework

In the RL framework, an agent interacts with the environment in a sequence of actions,
observations, and rewards. At each time step t, the agent (in our case the autonomous
vehicle) observes the state of the environment st ∈ S and it selects an action at ∈ A,
where S and A = {1, · · · ,K} are the state and action spaces. As the consequence of
applying the action at at state st, the agent receives a scalar reward signal rt. The
goal of the agent is to interact with the environment by selecting actions in a way
that maximizes the cumulative future rewards. The interaction of the agent with the
environment can be explicitly defined by a policy function π : S → A that maps states
to actions. In this work we exploit a DDQN for approximating an optimal policy, i.e.,
an action selection strategy that maximizes cumulative future rewards. Due to space
limitations we are not describing the DDQN model, we refer, however, the interested
reader to [13]. In order to train the DDQN, we describe, in the following, the state
representation, the action space, and the design of the reward signal.
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3.2 State Representation

We assume that the autonomous vehicle can sense its surrounding environment that
spans 75 meters behind it and 100 meters ahead of it, as well as, its two adjacent lanes,
see Fig. 1(a), and it can estimate the relative positions and velocities of other vehicles
that are present in these area. Note that given current LiDAR and camera sensing
technologies such an assumption can be considered valid. The sensed area is discretized
into tiles of one meter length, see Fig. 1(b), and the value of vehicles’ longitudinal
velocity (including the autonomous vehicle) is assigned to the tiles beneath of them.
The value of zero is given to all non occupied tiles that belong to the road, and -1
to tiles outside of the road (the autonomous vehicle can sense an area outside of the
road if it occupies the left-/right-most lane). This state representation is a matrix
that contains information about the absolute velocities of vehicles, as well as, relative
positions of other vehicles with respect to the autonomous vehicle. The vectorized
form of this matrix is used to represent the state of the environment.

3.3 Action Representation

The authors of [6] argue that low-level control tasks can be less effective and/or robust
for tactical level guidance. For this reason we construct an action set that contains
high-level actions. Specifically, we define seven available actions; i) change lane to the
left or right, ii) accelerate or decelerate with a constant acceleration or deceleration
of 1m/s2 or 2m/s2, and iii) move with the current speed at the current lane. For the
acceleration and deceleration actions feasible acceleration and deceleration values are
used. Moreover, the autonomous vehicle is making decisions by selecting one action
every one second, which implies that lane changing actions are also feasible.

3.4 Reward Signal Design

Designing appropriate rewards signals is the most important tool for shaping the be-
havior of the driving policy. The autonomous vehicle should be able to avoid colli-
sions, move with a desired speed, and avoid unnecessary lane changes and accelerations.
Therefore, the reward signal must reflect all these objectives by employing one penalty
function for collision avoidance, one that penalizes deviations from the desired speed
and two penalty functions for unnecessary lane changes and accelerations.

The penalty function for collision avoidance should feature high values at the
gross obstacle space, and low values outside of that space. To this end, we adopt the
exponential penalty function

f(δi) =

{
e−(δi−δ0) if le = li

0 otherwise
, (1)

where δi is the longitudinal distance between the autonomous vehicle and the i-th
obstacle, δ0 stands for the minimum safe distance, and, le and li denote the lanes
occupied by the autonomous vehicle and the i-th obstacle. If the value of (1) becomes
greater or equal to one, then the driving situation is considered very dangerous and it
is treated as a collision.

The vehicle mission is to advance with a longitudinal speed close to a desired one.
Thus, the quadratic term

h(v) = (v − vd)2 (2)
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that penalizes the deviation between real vehicles speed and its desired speed is used.
Variable v and vd stand for the real and the desired speed of the autonomous vehicle.

We also introduce two penalty terms for minimizing accelerations and lane changes.
For penalizing accelerations we use the term

a(vt, vt−1) = (vt − vt−1)2, (3)

and for penalizing lane changes the term

g(lt, lt−1) = I(le,t 6= le,t−1). (4)

Variables vk and lk correspond to the speed and lane of the autonomous vehicle at
time step k, while I(·) is the indicator function. The total rewards at time step t is
the negative weighted sum of the aforementioned penalties:

rt = −w1

Ot∑
i=1

ft(δi)−w2ht(vt)−w3

Ot∑
i=1

I(ft(δi) ≥ 1)−w4a(vt, vt−1)−w5g(lt, lt−1) (5)

In (5) the third term penalizes collisions and variable Ot corresponds to the total
number of obstacles that can be sensed by the autonomous vehicle at time step t.
The selection of weights defines the importance of each penalty function to the overall
reward. In this work the weights were set, using a trial and error procedure, as follows:
w1 = 1, w2 = 0.5, w3 = 20, w4 = 0.01, w5 = 0.01.

Before proceeding to the experimental results, we have to mention that the em-
ployed DDQN comprises of two identical neural networks with two hidden layers with
256 and 128 neurons. Also, the synchronization between the two neural networks, see
[13], is realized every 1000 epochs.

4 Experimental Results

Two different sets of experiments were conducted. In the first set of experiments, we
developed and utilized a simplified custom made microscopic traffic simulator, while,
the second set employs the established SUMO microscopic traffic simulator.

4.1 First set of experiments

The custom made simulator moves the manual driving vehicles with constant longitu-
dinal velocity using the kinematics equations. Moreover, the manual driving vehicles
are not allowed to change lanes. Despite its simplifying setting, this set of experiments
allow us to compare the RL driving policy against an optimal policy derived via DP.

For training the DDQN, driving scenarios of 60 seconds length were generated.
In these scenarios one vehicle enters the road every two seconds, while the tenth
vehicle that enters the road is the autonomous one. All vehicles enter the road at
a random lane, and their initial longitudinal velocity was randomly selected from a
uniform distribution ranging from 12m/s to 17m/s. Finally, the desired speed of the
autonomous vehicle was set equal to 21m/s.

We compared the RL driving policy against an optimal policy derived via DP
under four different road density values. For each one of the different densities 100
scenarios of 60 seconds length were simulated. In these scenarios, the simulator moves
the manual driving vehicles, while the autonomous vehicle moves by following the RL
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Table 1: Driving behavior evaluation of the RL and DP driving policies, in terms
of total number of collision and lane changes for 100 scenarios and percentage
of time that the vehicle moves with its desired speed.

1 veh./8 sec. Collisions Lane changes Desired speed (%)
DP policy 0 84 85
RL policy 0 81 73

1 veh./4 sec.
DP policy 0 127 83
RL policy 0 115 64

1 veh./2 sec.
DP policy 0 120 87
RL policy 0 108 62

1 veh./1 sec.
DP policy 0 70 72
RL policy 2 62 56

Table 2: Total number of collisions during 100 scenarios, when different magni-
tudes of measurement errors are introduced.

Measurement error ±5% ±10% ±15%
1 veh./8 sec. 0 0 0
1 veh./4 sec. 0 0 0
1 veh./2 sec. 0 1 1
1 veh./1 sec. 3 4 4

policy and by solving a DP problem (which utilizes the same objective functions and
actions as the RL algorithm). Finally, we extracted statistics regarding the number of
collisions and lane changes, and the percentage of time that the autonomous vehicle
moves with its desired speed for both the RL and DP policies. At this point it has to
be mentioned that DP is not able to produce the solution in real time, and it is just
used for benchmarking and comparison purposes.

Table 1 summarizes the results of this comparison. The four different densities are
determined by the rate at which the vehicles enter the road, that is, 1 vehicle enters
the road every 8, 4, 2, and 1 seconds. The RL policy is able to generate collision
free trajectories, when the density is less than or equal to the density used to train
the network. However, for larger density the RL policy produced 2 collisions in 100
scenarios. In terms of efficiency, the optimal DP policy is able to perform more lane
changes and advance the vehicle faster.

We also evaluated the robustness of the RL policy to measurement errors regarding
the position of the manual driving vehicles. At each time step, measurement errors
proportional to the distance between the autonomous vehicle and the manual driving
vehicles are introduced. We used three different error magnitudes; ±5%, ±10%, and
±15%. The RL policy was evaluated in terms of collisions in 100 driving scenarios of
60 seconds length for each error magnitude. When the density value is less than the
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density used to train the network the RL policy is very robust to measurement errors
and produces collision free trajectories, see Table 2. When the density is equal to the
one used for training, the RL policy can produce collision free trajectories only for
small measurement errors, while for larger errors it produced 1 collision in 100 driving
scenarios. Finally, when the density becomes larger, the performance of the RL policy
deteriorates.

4.2 Second set of experiments

In the second set of experiments we evaluate the behavior of the autonomous vehicle
when it follows the RL policy and when it is controlled by SUMO. We trained the RL
policy using scenarios generated by the SUMO simulator. During the generation of
scenarios, all SUMO safety mechanisms are enabled for the manual driving vehicles
and disabled for the autonomous vehicle. Furthermore, we do not permit the manual
driving cars to implement cooperative and strategic lane changes. Such a configuration
for the lane changing behavior, impels the autonomous vehicle to implement maneuvers
in order to achieve its objectives. Moreover, in order to simulate realistic scenarios
two different types of manual driving vehicles are used; vehicles that want to advance
faster than the autonomous vehicle and vehicles that want to advance slower. Finally,
the density was equal to 600 veh/lane/hour.

For the evaluation of the trained RL policy, we simulated i) 100 driving scenarios
during which the autonomous vehicle follows the RL driving policy, ii) 100 driving
scenarios during which the default configuration of SUMO was used to move forward
the autonomous vehicle, and iii) 100 scenarios during which the behavior of the au-
tonomous vehicle is the same as the manual driving vehicles, i.e. it does not perform
strategic and cooperative lane changes. The duration of all simulated scenarios was
60 seconds. We simulated scenarios for two different driving conditions. In the first
one the desired speed for the slow manual driving vehicles was set to 18m/s, while
in the second one to 16m/s. For both driving conditions the desired speed for the
fast manual driving vehicles was set to 25m/s. Furthermore, in order to investigate
how the presence of uncertainties affects the behavior of the autonomous vehicle, we
simulated scenarios where drivers’ imperfection was introduced by appropriately set-
ting the σ parameter in SUMO. Finally, the behavior of the autonomous vehicles was
evaluated in terms of i) collision rate, ii) average lane changes per scenario, and iii)
average speed per scenario.

In Table 3, SUMO default corresponds to the default SUMO configuration for
moving forward the autonomous vehicle, while SUMO manual to the case where the
behavior of the autonomous vehicle is the same as the manual driving vehicles. Irre-
spective of whether a perfect (σ = 0) or an imperfect (σ = 0.5) driver is considered for
the manual driving vehicles, the RL policy is able to move forward the autonomous
vehicle faster than the SUMO simulator, especially when slow vehicles are much slower
than the autonomous one. In order to achieve this, RL policy implements more lane
changes per scenario. However, it results to a collision rate of 2%-4%, which is its main
drawback. No guarantees for collision-free trajectory is the price paid for deriving a
learning based approach capable of generalizing to unknown driving situations and in-
ferring with minimal computational cost, driving actions. Although this drawback is
prohibitive for applying such a policy in real world environments, a mechanism can be
developed to translate the actions proposed by the RL policy in low level controls and
then implement them in a safe aware manner. The development of such a mechanism
is the topic of our ongoing work, which comes to extend this preliminary study and
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Table 3: Driving behavior evaluation. SUMO default corresponds to the default
SUMO configuration, while SUMO manual to the case where the behavior of
the autonomous vehicle is the same as the manual driving vehicles.

Desired speed for slow vehicles 18m/s
Collisions Lane changes Average speed

RL policy (σ = 0.0) 2% 1.93 20.71
SUMO default (σ = 0.0) 0% 0.99 20.22
SUMO manual (σ = 0.0) 0% 0.0 19.48
RL policy (σ = 0.5) 3% 1.92 20.09
SUMO default (σ = 0.5) 0% 0.89 19.57
SUMO manual (σ = 0.5) 0% 0.0 19.05

Desired speed for slow vehicles 16m/s
Collisions Lane changes Average speed

RL policy (σ = 0.0) 2% 2.02 20.04
SUMO default (σ = 0.0) 0% 0.33 18.41
SUMO manual (σ = 0.0) 0% 0.0 17.47
RL policy (σ = 0.5) 4% 1.83 19.87
SUMO default (σ = 0.5) 0% 0.31 17.67
SUMO manual (σ = 0.5) 0% 0.0 17.26

provide a complete methodology for deriving RL collision-free policies.

5 Conclusions

In this work, we employed the DDQN model to derive a RL driving policy for an
autonomous vehicle that moves on a highway. The proposed policy makes no assump-
tions about the environment, it does not require any knowledge about the system
dynamics. Moreover, it is able to produce actions with very low computational cost
via the evaluation of a function, and what is more important, it is capable of general-
izing to previously unseen driving situations. The derived driving policy, however, it
cannot guarantee a collision free trajectory. For this reason, there is an imminent need
for developing a low-level mechanism capable to translate the action coming from the
RL policy to low-level commands, and, then implement them in a safe aware manner.
The development of such a mechanism is the main objective of our ongoing work.
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